There is no such thing as more random. It is either random or not. Random means "hard to predict". It does not mean non-deterministic. Both random() and random() * random() are equally random if random() is random. Distribution is irrelevant as far as randomness goes. If a non-uniform distribution occurs, it just means that some values are more likely than others; they are still unpredictable.
Since pseudo-randomness is involved, the numbers are very much deterministic. However, pseudo-randomness is often sufficient in probability models and simulations. It is pretty well known that making a pseudo-random number generator complicated only makes it difficult to analyze. It is unlikely to improve randomness; it often causes it to fail statistical tests.
The desired properties of the random numbers are important: repeatability and reproducibility, statistical randomness, (usually) uniformly distributed, and a large period are a few.
Concerning transformations on random numbers: As someone said, the sum of two or more uniformly distributed results in a normal distribution. This is the additive central limit theorem. It applies regardless of the source distribution as long as all distributions are independent and identical. The multiplicative central limit theorem says the product of two or more independent and indentically distributed random variables is lognormal. The graph someone else created looks exponential, but it is really lognormal. So random() * random() is lognormally distributed (although it may not be independent since numbers are pulled from the same stream). This may be desirable in some applications. However, it is usually better to generate one random number and transform it to a lognormally-distributed number. Random() * random() may be difficult to analyze.
For more information, consult my book at www.performorama.org. The book is under construction, but the relevant material is there. Note that chapter and section numbers may change over time. Chapter 8 (probability theory) -- sections 8.3.1 and 8.3.3, chapter 10 (random numbers).